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Abstract
Complex collaborative activities such as treating
patients, co-authoring documents and developing
software are often characterized by teamwork that
is loosely coupled and extends in time. To remain
coordinated and avoid conflicts, team members need
to identify dependencies between their activities —
which though loosely coupled may interact — and
share information appropriately. The loose-coupling
of tasks increases the difficulty of identifying depen-
dencies, with the result that team members often
lack important information or are overwhelmed by
irrelevant information. This paper formalizes a new
multi-agent systems problem, Information Sharing
in Loosely-Coupled Extended-Duration Teamwork
(ISLET). It defines a new representation, Mutual In-
fluence Potential Networks (MIP-Nets) and an algo-
rithm, MIP-DOI, that uses this representation to de-
termine the information that is most relevant to each
team member. Importantly, because the extended
duration of the teamwork precludes team members
from developing complete plans in advance, the
MIP-Nets approach, unlike prior work on informa-
tion sharing, does not rely on a priori knowledge
of a team’s possible plans. Instead, it models col-
laboration patterns and dependencies among people
and their activities based on team-member interac-
tions. Empirical evaluations show that this approach
is able to learn collaboration patterns and identify
relevant information to share with team members.

1 Introduction
Distributed teamwork is increasingly prevalent. Technologies
such as Google Drive, Dropbox and Github enable teams to
share work artifacts and collaborate on complex activities
in a distributed, asynchronous manner. The coordination of
team activities remains a challenge, however, because these
technologies do not have capabilities for focusing people’s
attention on the actions taken by others that matter most to
their own activities.

In a study of complex healthcare teams, we identified five
characteristics of complex care that raise significant chal-
lenges to effective teamwork and care coordination, denoted

“FLECS”: (1) Flat team structure, (2) Loose-coupling of activ-
ities, (3) Extended duration of the teamwork, (4) Continued
revision of plans, and (5) Syncopated time scales of team mem-
bers [Amir et al., 2015]. In a study of home healthcare teams,
Pinelle and Gutwin [2006] also found coordination to be es-
pecially challenging in teamwork that was loosely-coupled in
nature and that extended over a long time period (months).

By decomposing the group activity into tasks carried out by
individual team members, loosely-coupled teamwork reduces
the need for negotiation and resolution of conflicts [Olson
and Teasley, 1996]. While such decomposition allows col-
laborators to focus on their individual tasks, it makes iden-
tifying dependencies and conflicts harder [Hutchins, 1995;
Grosz and Kraus, 1996]. The extended-duration of the team-
work further exacerbates the problem, as plans and dependen-
cies between tasks may change. As a result, team members
often either lack information about relevant activities of others
or are overwhelmed by the amount of information available
and unable to identify the subset of information that is impor-
tant to them [Hutchins, 1995; Amir et al., 2015]. Coordination
failures caused by lack of information about others’ activities
have been shown to result in unmet health needs and poten-
tially preventable health care crises [Leape, 2012].

This paper formally defines a new multi-agent systems
problem, Information Sharing in Loosely-coupled Extended-
duration Teamwork (ISLET), situates it in prior information
sharing research and presents new methods for addressing it.
To support team coordination, solutions to the ISLET problem
need to identify and share with team members information
that is relevant to their activities under a limited communi-
cation budget so as to not overwhelm them with too much
information. While our formulation of the ISLET problem was
primarily based on our study of complex care teams, loosely-
coupled extended-duration teamwork also arises in such other
settings as collaborative writing of documents [Haake and
Wilson, 1992] and open source software projects [Yamauchi et
al., 2000], and teams in these settings face similar information
sharing and coordination problems.

Existing methods for reasoning about information shar-
ing [Roth et al., 2006; Amir et al., 2014; Melo et al., 2012;
Wu et al., 2011; Unhelkar and Shah, 2016] rely on a com-
plete plan knowledge assumption; they assume availability
of a complete domain model of the actions or plan library,
state space, and utilities or goals. They use this model



and knowledge of a team’s plans or policies to compute the
value of information. Although some approaches assume
only incomplete knowledge of agents’ plans and use rein-
forcement learning [Zhang and Lesser, 2013; Barrett and
Stone, 2015] or plan recognition [Kaminka et al., 2002;
Amir and Gal, 2013] to infer other agents’ plans or parts of
the environment model (e.g., transition and reward functions),
these approaches still assume a known planning domain (i.e.,
known state space and actions in MDP frameworks, or known
plan library in plan recognition approaches). In many dis-
tributed human teamwork settings, such plan models are rarely
explicitly specified. For example, the complex health care
teams we studied might agree on high-level treatment goals
but never fully specify a long-term plan [Amir et al., 2015;
2013]. The approach we present for ISLET problems does not
rely on the complete plan knowledge assumption.

Furthermore, existing approaches typically address settings
with relatively short-term execution time-frames and tight-
coupling of activities. Loosely-coupled teamwork that extends
over longer time periods presents both a challenge and an
opportunity. The challenge: extended-duration teamwork re-
quires continuous revisions to achieve goals. For example, the
final structure of a document often emerges only after several
iterations by authors, and treatments for patients with chronic
conditions evolve over time. The opportunity: while team
members’ activities may change over time, their overarching
responsibilities and collaboration patterns typically persist.
For example, while a neurologist might change prescribed
treatments, she will likely continue to address the same types
of medical problems, and to have similar dependencies with
other providers’ treatments.

Our approach utilizes the extended duration of such team-
work to learn collaboration patterns from team members’ inter-
actions. We introduce a new representation, “Mutual Influence
Potential Network” (MIP-Net), to model knowledge about
such collaboration patterns. MIP-Nets are updated over time
based on the system’s observations of team member interac-
tions. MIP-Nets implicitly represent role allocation (i.e., team
members’ primary responsibilities) and dependencies between
different team members’ activities. We develop the MIP-DOI
algorithm which uses the MIP-Net structure to reason about
information sharing decisions.

The paper makes the following contributions: (1) it for-
mally defines ISLET, a novel class of information sharing
problems; (2) it presents MIP-Nets, a new representation for
modeling collaboration patterns and dependencies between
team member activities; (3) it presents MIP-DOI, an algorithm
for reasoning with MIP-Nets about information sharing; (4) it
evaluates MIP-DOI, showing that it is able to share relevant
information with team members.

2 The ISLET Problem
An ISLET problem setting comprises the following:

• P : a set of collaborating partners. The set can change
over time with partners joining or leaving the team.

• O: a set of objects that partners interact with. The set can
change over time as a result of partners’ actions.

• A: the set of act-types {ADD,MOD,DEL} for
adding, modifying or deleting objects. These general
domain independent act-types are specialized to domain-
specific act-types in each application domain.

• S: interaction sessions of partners. A session
s(p, t, (〈a1, o1〉, ..., 〈a|s|, o|s|〉)) is defined by a triple:
the partner acting, the time of the session, and a set
of pairs of act-types and the objects they operate on
(〈ai, oi〉) 1. For brevity, we denote a session recorded
at time t as st.

The ISLET problem is to determine a set of objects
Oshare ⊂ O, where |Oshare| = l, to inform p ∈ P about,
given sessions s1 to st−1 and the identity of the partner p
who is starting st. The constraint on the cardinality of Oshare

(l), is a communication budget, which restricts the amount
of information that can be shared, reflecting the need not to
overwhelm partners with too much information. The objects
in the set Oshare should be relevant to the partner. The notion
of relevance has been widely discussed in the literature on
cognition and communication [Sperber and Wilson, 1987].
Intuitively, information is relevant if it will affect the part-
ner’s actions. The specific definition of relevance, however, is
domain dependent.

To illustrate ISLET settings, we will use the example of a
collaborative writing scenario in which a group of researchers
(the P ), comprising Alice, Bob and Chris, writes a grant pro-
posal together. In this scenario, the set of objects (O) includes
the paragraphs of the proposal. Specializing to the domain and
applying act-types (A) to objects yields such actions as writing
new paragraphs, removing paragraphs or editing paragraphs.
Sessions (S) are added over time as Alice, Bob, and Chris
edit the document, and the set O evolves as paragraphs are
added or deleted. P can also evolve over time; for instance
Dan might join in writing the proposal.

On Monday morning (t10), Alice (p1) edits the docu-
ment, taking the following actions: modifying paragraph 3
(〈MOD, o3〉), deleting paragraph 4 (〈DEL, o4〉) and adding a
new paragraph (〈Add, o5〉). These actions together constitute
the session shown in Figure 1(a). The following day, Chris
begins editing the document. In this example, the ISLET prob-
lem is to choose the set of paragraphs to share with Chris. For
example, if l = 2, Oshare should include the two paragraphs
that have changed since Chris last edited the document and
that are deemed most relevant to Chris’ activities.

3 Mutual Influence Potential Networks
MIP-Nets represent interactions between partners and objects
and dependencies between different objects. In a MIP-Net,
partners and objects are represented by nodes. A particular
partner p ∈ P and an object o ∈ O are represented by nodes
np and no, respectively. Henceforth, we use p when referring
to a particular partner and o for a particular object.

Particular nodes np and no are connected by an edge if
p performed an action on o. The edge weight corresponds
to the extent of the interaction: if p takes many actions that

1We use only the 〈ai, oi〉 pairs to emphasize that the partner and
time are the same for all actions taken in a single session.
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Figure 1: (a) An interaction session s10; (b) The MIP-Net after sessions s1 − s9; (c) The updated MIP-Net after session s10.

affect object o, this will be reflected by a high weight on the
edge connection np and no. Thus, the weights on such edges
represent information about team members’ responsibilities,
which we will refer to as “role allocation”. Similarly, no and
no′ are connected by weighted edges based on the frequency
of the objects they represent being modified in the same ses-
sions. Edges connecting object nodes thus represent object
dependencies, i.e., the extent to which team members tend
to change one object when they change the other. We refer
to these object dependencies as the “task structure”, because
these groupings are likely to be a reflection of an underlying
task. For instance, in a research paper, paragraphs reporting
results in a Results section and in a Conclusion section might
be frequently edited together as part of the same underlying
task of adding new results to the paper. Importantly, this sense
of task structure is much looser than that used in formal plan
representations such as HTN.

Formally, a MIP-Net consists of:

• NP : a set of partner nodes.

• NO: a set of object nodes.

• E: a set of edges, each edge connecting a partner node
with an object node or two object nodes.

Figure 1(b) shows a sample MIP-Net. Partner nodes and
edges connecting partners and objects are shown in blue. Ob-
ject nodes and edges connecting them are shown in red. Num-
bers on edges represent the edge weights.

MIP-Nets are constructed and revised over time based on
partners’ sessions. At the end of each session st, the MIP-
Net is updated. The MIP-Net update procedure shown in
Algorithm 1 first checks whether p is already represented by
a node in the MIP-Net. If not, a new node is added to NP

(lines 1–2). Next, it iterates over all actions in the session; new
object nodes are added as a result of ADD actions, and the
weights of edges connecting np with object nodes representing
objects on which that partner acted are incremented by 1 (lines
3–6). Similarly, the weights of edges connecting object nodes
representing objects that the partner interacted with in the
same session are incremented by 1 (lines 7–10). We note
that nodes representing deleted objects persist in the MIP-Net
as information about their connections can implicitly reveal
dependencies between other objects.

To illustrate the MIP update procedure, consider the collabo-
rative writing scenario described earlier: assume the MIP-Net
at time t = 9 is the one shown in Figure 1(b). Following s10
(Figure 1(a)), the MIP-Net is updated, yielding the network
shown in Figure 1(c). As shown, a node representing o5 was
added to the MIP-Net and the weight on edges connecting p1

Input: s(p, t, (〈a1, o1〉, ..., 〈a|s|, o|s|〉))
1 if np /∈ NP then
2 NP = NP ∪ np

3 for a, o ∈ s do
4 if a = ADD then
5 NO = NO ∪ no

6 IncrementWeight(np, no)

7 for a, o ∈ s do
8 for a′, o′ ∈ s do
9 if o 6= o′ then

10 IncrementWeight(no, no′)

Algorithm 1: MIP-Net update procedure.

(the node representing Alice) with o3, o4 and o5 were incre-
mented. The weights on edges connecting all pairs of objects
included in the session (e.g., o3 and o4) were also incremented.

The computational complexity of this procedure is domi-
nated by |s|2, where |s| is the number of 〈a, o〉 pairs in the
session. The update procedure requires one iteration over the
set of 〈a, o〉 pairs to update the weights connecting np with
nodes representing the objects interacted with during the ses-
sion, and a second iteration over all pairs of objects o, o′ that
were interacted with in the session to update weights on edges
connecting object nodes.

4 The MIP-DOI Algorithm
The MIP-DOI algorithm uses the MIP-Net to reason about
information sharing in ISLET problem settings. To quantify
the relevance to p of modifications to some object o, we
use the concept of Degree-Of-Interest (DOI). Furnas [1986]
defined DOI(x | y) as the degree of interest a user has in
an item x, given that the user is focused on some item y, and
computed it as follows:

DOI(x | y) = α ·API(x) + β ·D(x, y)

API(x) is the a priori importance of item x that is indepen-
dent of the user’s identity, and D(x, y) is the distance between
x and y. This notion of DOI fits our purposes, as collabora-
tors will likely find value in information about objects that
are closely related to objects they interacted with or currently
focus on, as well as in information about objects that appear to
be of significant importance to the team’s activities as a whole.

Similar to Van Ham et al. [2009], we use a network-based
DOI metric. In our formulation of DOI, we consider two
different nodes as representing p’s focus of attention: (1) the
node representing the partner in the MIP-Net (np), as the edges
from np capture the extent of interaction between p and the



different objects, and (2) the node representing the object that
the partner acts on at the beginning of a session, denoted of
for “focus object”. In many settings, information about of is
available to the system (e.g., observing the paragraph Alice
starts editing) and can be integrated in the DOI computation.
In sum, we measure DOI by computing:

DOI(o | p, of ) = α ·API(no) + β1 ·D(no, np) + β2 ·D(no, nof )

The distance values D(no, np) and D(no, nof ) can be com-
puted using various distance measures for networks. We used
the Adamic/Adar proximity metric [Adamic and Adar, 2003],
adapted to take into account edge weights. Network centrality
metrics can be used to compute the a priori importance of an
object node no. Our implementation uses deg(no) (the sum of
weights on edges connected to no). Note that the importance
of objects can change over time. For instance, if many partners
interact with an object, its degree will increase and thus its
centrality will increase. In this paper, we focus on analyzing
the effect of each of the parameters α, β1 and β2 rather than on
optimizing their values. We discuss ways to set these values
in Section 6.

To determine the set of objects Oshare ⊂ O to share with
p, the MIP-DOI algorithm computes DOI(o | p, of ) for each
o ∈ O and chooses the l objects with the highest DOI. The
computational complexity of MIP-DOI depends on the meth-
ods used to compute API and D. In our implementation it is
dominated by |O|2.

5 Empirical Methodology
We undertook two types of evaluation: (1) an analysis of
Wikipedia revision histories, and (2) collaborative activity
simulation.

The Wikipedia analysis tested the ability of MIP-DOI to
predict the paragraphs that partners would edit because we
cannot directly assess the relevance of shared information
using only historic data. This evaluation assesses the ability of
MIP-Nets to capture useful signals from partners’ interactions
in real-world settings. It provides indirect evidence of the
ability of MIP-DOI to identify relevant information, assuming
authors would have had interest in changes to paragraphs they
intended to edit.

The collaborative activity simulation was conducted for two
reasons. First, it provides a ground truth for assessing the rele-
vance of information. Second, collaborative activities can vary
in many aspects, including the size of the group, frequency of
interactions and coupling of tasks. For example, Wikipedia
articles are written by a large number of authors with a small
percentage of the authors making the majority of contributions,
while academic papers are typically written by a much smaller
number of authors who act in a more coordinated way (e.g.,
they might divide responsibilities for different sections). Soft-
ware projects hosted in GitHub also differ significantly in the
nature of the collaboration on projects [Kalliamvakou et al.,
2014]. Some projects include a small group of collaborators
that contribute fairly equally, while others have one or two
main contributors and a large number of developers who only
make a single contribution. In healthcare, the role allocation

among care providers is much more strict due to their special-
ization. The simulation enables exploration of the effects of
such aspects of teamwork in a controlled environment.

5.1 Wikipedia Revision Analysis
In the context of Wikipedia articles, the article authors con-
stitute the group of partners P ; the edits made in a single
Wikipedia revision constitute a session (each revision is done
by a single author); the paragraphs of an article correspond to
the set of objects O. We define the following prediction task:
given sessions s1 to st−1 and the identity of the partner p who
is the editor of revision st, predict the paragraphs (objects)
that will be edited in session st.

We use the approach we developed in prior work to track
paragraphs across revisions [Gehrmann et al., 2015], as a
paragraph can change its relative position over time but should
still correspond to the same object. Since we do not have
access to the focus object of (the data does not include the
order of edits), we consider only the a priori importance of
each object (paragraph) and proximity to the partner’s node
(i.e., β2 = 0).

We evaluated 3 configurations of MIP-DOI: MIP-DOI-
centrality (α = 1), MIP-DOI-partner (β1 = 1) and MIP-
DOI-combined (α = 0.5, β1 = 0.5), comparing them with
3 baselines: random ranking, ranking by recency of last edit
to the paragraph, ranking by frequency of edits to the para-
graph. Results were averaged over 24 articles sampled from
Wikipedia’s “featured” articles (high-quality articles chosen
in a peer-review process). We measure precision@k, which
is the prediction accuracy for the top ranked k paragraphs; a
value of 1 means that all k paragraphs were edited in the next
revision. Given space limitations, we only report precision@5.
Similar trends were obtained for other values of k.

The first row of Table 1 shows precision@5 values obtained
by the different algorithms. All MIP-DOI configurations out-
performed the baseline predictions. The differences between
each pair were statistically significant (p < 0.01). We note
that the random baseline achieves reasonable precision be-
cause many paragraphs get edited in each revision. (Articles
are not very long and thus authors can edit significant parts of
the article in each revision.)

Of the MIP-DOI configurations, MIP-DOI-centrality
achieved the highest precision; its precision was 26% higher
than that of the random baseline. MIP-DOI-partner also out-
performed all other baselines, but considering the proximity
to the partner node did not improve accuracy on average com-
pared to MIP-DOI-centrality. This result on Wikipedia data
is not surprising for several reasons. First, Wikipedia editing
is an extremely decentralized activity: there is typically no
clear role allocation on Wikipedia because partners do not
coordinate their activities, articles are relatively short and the
sections of an article often do not require specialization. As
a result, authors typically edit all sections of articles and do
not focus on particular sections. Furthermore, most authors
only make a single revision. However, as the second row of
Table 1 shows, for 8 of the articles (typically longer articles),
information about the identity of the partner did improve the
precision. This result suggests that for groups collaborating
on more complex tasks and that operate in a more organized



MIP-DOI-partner MIP-DOI-combined MIP-DOI-centrality Random Recency Frequency
Precision@5 0.814 0.843 0.877 0.695 0.718 0.711
Highest precision 1 (4.2%) 7 (29.1%) 16 (66.7%) 0 0 0

Table 1: Precision@5 and the number of articles for which an algorithm achieved the highest precision.

manner (e.g., explicitly divide tasks), both the proximity of
objects to the partner and the centrality of objects will con-
tribute to assessing the relevance of information about objects
to particular partners.

5.2 Collaborative Activity Simulation
We designed a collaborative activity simulation in which a
group of partners (P ) are faced with a constraint satisfaction
problem that abstracts the type of coordination problems that
arise in collaborative activities. In the simulation, the partners
collaboratively color a graph G(V,E) using a set C of colors
such that no two neighboring vertices are assigned the same
color. Constraints on the colors of neighboring vertices corre-
spond to a group’s need to align their activities. For example,
in the writing scenario, a paragraph summarizing the results
in the introduction of the paper must align with the results
described in the results section. In healthcare, a choice of a
course of treatment for one condition can constrain treatment
of other conditions due to conflicting effects.

We formulate this collaborative activity as an instance of an
ISLET problem as follows:
• P : collaborating partners.
• O: graph vertices.
• A: The act-types MOD, DEL and ADD are instan-

tiated as follows: mod(v, c, c′) changes the color of v
from c to c′, where c, c′ ∈ C. add(v) adds a new vertex
v′ as a neighbor to an existing vertex v. del(v) removes
vertex v from the graph.
• S: Interaction sessions: thesession
s(p, t, (〈a1, o1〉, ..., 〈ak, ok〉)) consists of the changes
made to the graph by p at time t.

For simplicity, in this section we describe a simulation in
which the set of objects is constant (i.e., only the MOD
act-type is used). To test the robustness of MIP-DOI in
dynamic settings, we also evaluated it in a simulation that
includedADD and DEL action types, for which we obtained
similar results (omitted for space considerations).

Importantly, our goal is not to propose a new distributed
algorithm for solving CSP problems. Rather, the algorithm’s
task is to determine what information about vertices’ colors to
share with each partner before the partner decides which ac-
tions to take. To reflect the information that would be available
in real-world settings, the algorithms do not have access to the
graph structure (G). They only know about the existence of
objects (vertices) that partners interacted with and their colors,
but do not have information about edges.

Partners know the graph structure (i.e., the edges between
vertices), but do not know the current color of a vertex unless
it was shared with them, and they assume a vertex’s color
has not changed until they receive new information. This
reflects the ISLET setting in that partners might know what
potential dependencies exist between different objects, but

not the current state of the different objects. They thus might
not be aware of conflicts. For example, Alice might know
that there is mutual dependency between different sections
of a proposal, but not be aware of inconsistencies in current
versions of the sections without reading them.

To reflect the loosely-coupled nature of teamwork, we as-
sign to each partner a primary cluster of objects it interacts
with. Further, we generate more edges (constraints) between
objects that belong to the same cluster than between objects
in different clusters, because in loosely-coupled teamwork
we expect fewer dependencies between activities that are pri-
marily assigned to different team members. We restrict the
number of objects partners can modify in each turn to model
the time constraints that typically exist in real-world teamwork
(e.g., Bob cannot edit the entire document in one session). Ta-
ble 2 lists the parameters that operationalize these teamwork
characteristics.

In each round of the simulation procedure, shown in Algo-
rithm 2, the partners take turns modifying vertex colors, as
follows: (1) In turn, each partner p chooses a focus object,
denoted of , and a set of k objects to modify denoted Omodify

(line 3). The object of is chosen from the partner’s primary
cluster with probability prprimary (and from a different clus-
ter with probability 1 − prprimary). The remaining k − 1
vertices in Omodify are chosen in proportion to their distance
from of in the graph, to reflect higher likelihood of partners
carrying out activities that are closely related to each other in
each session; (2) A set Oshare of l objects to inform p about
are chosen by the information sharing algorithm, given p, of
and sessions s1 to st−1 (line 4); (3) The belief of p about
vertices’ colors is updated to reflect the shared information
(line 5); (4) p chooses colors for objects in Omodify , such that
the assignment minimizes the number of conflicts known to p,
based on its updated belief (line 6); (5) The problem instance
is updated to reflect the new coloring (line 7).

Input: P, problemInstance, k, l,maxRounds
1 while t < maxRounds do
2 for p ∈ P do
3 Omodify, of = p.chooseObjects(k)
4 Oshare = getObjectsToShare(l, of )
5 p.updateBelief(Oshare)
6 st = p.chooseActions(Omodify)
7 problemInstance.update(st)

8 t = t+ 1

Algorithm 2: Graph coloring simulation procedure.

Evaluation Metrics
We consider an object o ∈ Oshare relevant if there is an edge
connecting o to at least one object in Omodify, as such infor-
mation can directly affect p’s choice of action. We measure
precision ( |Orelevant∩Oshare|

|Oshare| ) and recall ( |Orelevant∩Oshare|
|Orelevant| ).



Parameter Description
|P | Number of partners [5]
|Cl| Mean cluster size [10]
prprimary Probability of is chosen from the primary cluster [0.8]
prwithin Probability of creating an edge between vertices in the

same cluster [0.3]
prbetween Probability of creating an edge between vertices in dif-

ferent clusters [0.05]
k = |Omodify| Number of actions p can take in a single session [3]
l = |Oshare| Number of objects that can be shared in a single session

Table 2: The parameters controlling simulation configurations. Val-
ues in brackets were used in the experiments Section 5.2.

Algorithm Comparisons
In addition to the baselines used in the Wikipedia analysis
(random, recency and frequency), we evaluated an Omniscient
algorithm which has access to the graph structure and chooses
objects in proportion to their distance from of . We evaluated
MIP-DOI-centrality (α = 1), MIP-DOI-partner (β1 = 1)
(as in Wikipedia evaluation), and MIP-DOI-focus which only
considers objects’ proximity to of (β2 = 1). The MIP-DOI
and the baselines all consider objects to share with p only from
the set of objects that have been modified by other partners
since p last interacted with them.

Simulation Results
This section reports results of a simulation that used the pa-
rameter values shown in brackets in Table 2. The relative
performance of the different algorithms was consistent across
other parameter settings. Figure 2(a) shows the precision ob-
tained by each of the algorithms with l = 3. Overall, all
MIP-DOI configurations significantly outperformed all base-
lines except of course for the omniscient baseline which has
access to the graph structure. As can be seen in the figure,
of the MIP-DOI configurations, MIP-DOI-focus achieved the
best performance. Over time, its performance becomes close
to that of the omniscient algorithm as more information about
the task structure is accumulated in the MIP-Net.

If algorithms do not have access to of , MIP-DOI-partner
(proximity of objects to partners) still outperforms all other un-
informed baselines, demonstrating that MIP-Nets effectively
recover information about partners’ role allocation (i.e., their
cluster assignment). MIP-DOI-centrality, despite not incorpo-
rating the proximity of objects to of or p, still outperforms
the other baselines, but achieves relatively low accuracy.

Figure 2(b) shows precision-recall curves for the algorithms.
The curves were generated by varying the communication bud-
get l between 1 (the leftmost points in Figure 2(b)) and the total
number of changed objects considered for sharing. The results
are aggregated starting from round 15, a point at which the
MIP-Net has accumulated some information about partners’
activities. As can be seen in the figure, all configurations of
MIP-DOI significantly outperform the uninformed baselines.
The gap between the performance of MIP-DOI-focus and the
omniscient algorithm is relatively small when using very lim-
ited communication budgets (l ≤ 3), demonstrating that the
MIP-Net representation can effectively distinguish between
clearly relevant objects (high proximity to of ) and clearly irrel-
evant objects (low proximity to of ). For larger values of l, the
MIP-Net representation is less capable of separating relevant
and irrelevant objects and the difference between MIP-DOI

β2 = 1
(focus)

α = 0.3, β2 = 0.7 β1 = 1
(partner)

α = 0.3, β1 = 0.7

t0 − t14 0.40 0.45 0.33 0.36
t15 − t99 0.69 0.55 0.42 0.39

Table 3: Average precision obtained by MIP-DOI with different
configurations in early and late rounds of the simulation.

and the omniscient algorithm is greater.
While MIP-DOI-centrality does not perform well, integrat-

ing α (object centrality) with either β2 (proximity to of , when
of is known) or with β1 (proximity to the partner, when of is
unknown) leads to improved performance in early rounds, as
objects that are more central are likely to have more short paths
connecting them with other objects, and thus higher probabil-
ity of being chosen for Omodify. This can be seen in the first
row of Table 3. However, once sufficient information about
specific objects and partners’ roles is accumulated, integrating
α results in lower precision (second row of Table 3).

Team members are likely to have more difficulty identi-
fying relevant information about objects they interact with
infrequently. Therefore, we examined the extent to which
MIP-DOI is able to retrieve relevant objects that do not belong
to partners’ primary clusters. When using MIP-DOI-focus
with l = 3, 72% of the objects in Oshare were from outside of
the partners’ primary clusters. Using MIP-DOI-partner leads
to less sharing of information from outside the primary cluster
(50%), as the DOI focuses on distance from the partner’s node.
MIP-DOI-centrality shares the most information from outside
the primary cluster (87%), but at the cost of sharing many
irrelevant objects.

These analyses were based on a specific configuration of the
simulation, but the general trends in performance were robust
across different parameter configurations of the simulation.
We briefly describe qualitatively the effects of varying the
simulation parameters on the performance of MIP-DOI.

Team size: varying the number of partners (|P |) does not
substantially affect the performance of MIP-DOI-focus. More
objects are changed at each turn, resulting in higher precision
when using MIP-DOI-focus. Recall, however, does not in-
crease because there are overall more relevant objects. The
performance of MIP-DOI-partner degrades with increased
team size, as it takes longer to learn the role allocation.

Cluster size: increasing the number of objects in each clus-
ter (|Cl|) leads to lower precision of all MIP-DOI configura-
tions, as it takes the MIP-Net longer to capture the dependen-
cies (constraints) between objects and the roles of partners.

Number of modified objects: when increasing the number
of objects a partner can change in a session (k), there are two
effects: on the one hand, more information is incorporated in
the MIP Update procedure (as more actions are taken). On the
other hand, the relationship between pairs of objects is less
indicative of constraints between them (e.g., there is a higher
likelihood of choosing more distant objects to change together
with of ). Overall, the performance of MIP-DOI is similar
across different values of k. Precision increases as there are
simply more relevant objects, but recall does not.

Role allocation strictness: the strictness of role allocation
is determined by prprimary, that is, the probability that a
partner chooses of from its primary cluster. The performance
of MIP-DOI-partner is affected most by the changes to role
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Figure 2: (a) Average precision by round (10 different graph instances with 5 runs each). (b) Precision-recall curve generated by varying l;
each point shows the precision and recall for a given communication budget (l) with results aggregated from rounds t15 − t99.

allocation: with more strict role allocation (higher prprimary),
it is easier to capture the roles of different partners, and thus the
proximity between object nodes and the partner node is more
indicative of relevance. The other algorithms are not affected
much by these changes. Their precision slightly decreases
when increasing prprimary as less relevant objects change
between each partner’s consecutive sessions, but recall remains
similar.

Graph structure: the parameters prwithin and prbetween

determine the likelihood of edges (constraints) connecting
vertices in the same and in different clusters respectively. Gen-
erally, increasing both probabilities means that there are more
edges in the graph, and thus more potentially relevant objects
to share. Therefore, precision generally goes up with higher
values of prwithin and prbetween, while recall does not. The
exact effect depends on the specific values of these proba-
bilities. prbetween in essence controls the level of coupling
between partners’ activities. With smaller values of prbetween,
it becomes harder for MIP-DOI to learn about the dependen-
cies between different partners’ activities, and thus it becomes
harder to share with a partner relevant information from out-
side that partner’s primary cluster.

6 Discussion and Future Work
This paper formalizes the problem of Information Sharing
in Loosely-coupled Extended-duration Teamwork (ISLET),
which arises in such distributed human teamwork settings as
complex healthcare, collaborative writing, and collaborative
software projects. In these settings, complete information
about team plans is unavailable as teams rarely explicitly de-
velop detailed plans for their activities. Our approach for
identifying relevant information to team members does not
rely on the complete plan knowledge assumption as prior ap-
proaches do. Instead, it utilizes the extended duration of the
teamwork to learn about dependencies between activities and
team members’ roles. While our motivation for addressing this
problem comes from human teamwork, the proposed approach
also applies to groups of computer agents or mixed groups of
people and computers in which complete plan models are not
available. For example, in ad-hoc teamwork settings [Stone et
al., 2010], agents need to interact with other agents without
pre-coordinating, and information sharing algorithms cannot
rely on having complete plan models.

The results of our Wikipedia analysis demonstrate that MIP-
Nets capture useful information about collaborative activities
based on partners’ interactions. The results of our simulations
show that MIP-DOI can identify relevant information to share
with team members. Two limitations to our approach require
mention: First, it needs to accumulate some information about
partners’ activities before successfully identifying relevant
information to share with partners (the “cold-start” problem).
Second, since it learns collaboration patterns over time, it will
not work well in settings in which role allocation and task
dependencies change very frequently.

We plan to extend the algorithms in the following ways
to address these limitations: (1) initializing a MIP-Net with
partial information about the task structure and team mem-
bers role allocation when such information is available, e.g.,
using medical ontologies [Pisanelli, 2004] in the healthcare
domain, or using the hierarchical structure of a document in
collaborative writing settings; (2) incorporating team mem-
bers’ feedback about the relevance of information that has
been shared with them into the MIP-Net; (3) incorporating the
extent of change to an object (e.g., the extent of change to a
paragraph) as an additional component in the DOI computa-
tion, and decaying weights on edges over time to “unlearn”
dependencies that have changed.

As demonstrated by our empirical evaluations, the contri-
bution of the different MIP-DOI components depends on the
nature of the collaborative activity. We plan to use optimiza-
tion methods to set their weights, as well as to allow the users
to adjust them with different queries. For instance, a user
could request to see information about objects that are “closer”
to her activities (high beta1), or information about objects that
are generally important to the collaborative activity (high α).

We are currently integrating our algorithm in systems for
supporting teamwork: in healthcare, it will be used to proac-
tively notify care providers of information that is likely to
affect their care activities in a system we have developed for
monitoring care plans of complex patients. For writing, we
are developing a Google Docs add-on that will provide an
intelligent, personalized “diff” to authors.
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